A Riemannian Network for SPD Matrix Learnin
نویسندگان
چکیده
Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting Riemannian geometry of underlying SPD manifolds. In this paper we build a Riemannian network architecture to open up a new direction of SPD matrix non-linear learning in a deep model. In particular, we devise bilinear mapping layers to transform input SPD matrices to more desirable SPD matrices, exploit eigenvalue rectification layers to apply a non-linear activation function to the new SPD matrices, and design an eigenvalue logarithm layer to perform Riemannian computing on the resulting SPD matrices for regular output layers. For training the proposed deep network, we exploit a new backpropagation with a variant of stochastic gradient descent on Stiefel manifolds to update the structured connection weights and the involved SPD matrix data. We show through experiments that the proposed SPD matrix network can be simply trained and outperform existing SPD matrix learning and state-of-the-art methods in three typical visual classification tasks.
منابع مشابه
A Riemannian Network for SPD Matrix Learning
Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting the Riemannian geometry of the underlying SPD manifold. In this paper we build a Riemannian network to open up a new direction of SPD matrix non-linear learning in a deep architecture. Th...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملDeep manifold-to-manifold transforming network for action recognition
In this paper, a novel deep manifold-to-manifold transforming network (DMT-Net) is proposed for action recognition, in which symmetric positive definite (SPD) matrix is adopted to describe the spatial-temporal information of action feature vectors. Since each SPD matrix is a point of the Riemannian manifold space, the proposed DMT-Net aims to learn more discriminative feature by hierarchically ...
متن کاملDeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-grained Image Recognition
Being symmetric positive-definite (SPD), covariance matrix has traditionally been used to represent a set of local descriptors in visual recognition. Recent study shows that kernel matrix can give considerably better representation by modelling the nonlinearity in the local descriptor set. Nevertheless, neither the descriptors nor the kernel matrix is deeply learned. Worse, they are considered ...
متن کاملGeometry-aware Similarity Learning on SPD Manifolds for Visual Recognition
Symmetric Positive Definite (SPD) matrices have been widely used for data representation in many visual recognition tasks. The success mainly attributes to learning discriminative SPD matrices with encoding the Riemannian geometry of the underlying SPD manifold. In this paper, we propose a geometry-aware SPD similarity learning (SPDSL) framework to learn discriminative SPD features by directly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017